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ABSTRACT

The Trajectory Analysis Program (TAP) is designed specifically

for _,se on the CDC 6000 series machine ati a computational tool

to generate trajectories by different mathematical formulations

and to compare the results. In particular, the reference trajec-

tory is the result of numerical integration of the equations of

motion in a Cowell formulation with time as the independent vari-

able; whereas, the comparison trajectory selected is achieved by

an analytic (Pines, Kyner, or Escobal) or a numerically integrated

Encke (classical or modified) formulation. A comprehensive

description is presented of the algorithms implemented in TAP

with emphasis on characteristics such as logic flow, equations,

numerical techniques, comparison differencing, and plotting. A

basic usage guide is included with complete instructions for input

1' data preparation and explanations of output tables.
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N4IMENCLATURE

[A] sum of constant matrices (evaluated at epoch) whose scalar
coefficients are slowly varying functions of q7 and the rate
parameteers (1, r$,.)

[A] time derivative of the matrLx [A]

a semimajor axis

a mean equatorial radius of earth- or semi-diameter of 1'
e the central mass

a. scalar coefficients of rotation matrix [A]

CDA/W drag coeffici,.-nt

DEQ numerical integrator used for trajectory generaton

DP double precision

ECI earth- cntered inertial q

e eccentricity

F, G Keplerian scalar functicns

f true anomaly j

,gLjj gravitational acceleration vector duc to noncentral force
field of earth in local horizontal system, in which
coordinate ax,-s are directed Up (along the po-sition vector),
East, and North

h angular momentum 7I

i inclination

J2 second zonal harmonic coefficient

K.E. kinetic energy

k Gaussian or planetary constant

L additive secular acceleration vector that accounts for
consideration of non-two-body reference orbit



true longitude
M, N rotating vectc-rs always in nominal orbital plane that maintainconstant angles with precessing line of apses of nominal ellipse

M mean anomaly
IT nominal anomalistic mean motion

n mean motion
Pbp-, partial double precison

P. E, potential energy

Ke3plelrian Period

derivative of Legendre function with respect to sin qp

p semi-parameter of the conic

\[] rotation matrix r

k.TC orbit-plane system

i r geocentric distance of vehicle

r position vector

r (tM nominal trajectory posit-,*-n vector at tixmz t

velocity vector

vehicle velocity vector relative to a r!otat'ing atmosphere-.A

r acceleration vector

noncentral gravitational acceleration vector

atmo~spherit drag acceleration vectort

rssr' root-sium-square

SP single precision

-, -'C-



S(R, T, C, RT' C') state vector in orbit-plane system coordinates

S(r, _i, ) vehicle state vector of position, velocity,
and acceleration

S(r n 3, _ ) a non-Keplerian state vector

S(r, kt) vehicle state vector of position and vvlocity

TAP Trajectory Analysis Program

T. E. total energy (K. E. + P. E.)

T earth-fixed local horizontal system transformation
matrix

t time

u argument of latitude

v true anomaly

*Y rate parameter of nominal anomalistic mean motion IT

independent variable difference (time At; true anomaly
6f; eccentric anomaly AE)

6 Kronecker delta function

convergence criterion for solution of Kepler's equation

vector cross-track direction

rate parameter of the major axis of the nominal ellipse

vector in-track direction

- longitude of vehicle

p. square of the gravitational constant of the earth

-[p] sum of celestial object mass and central mass

' C'



_ vect or radial direction

-T rate Vparameter of the line of nodes of the nominal plane

9'latitude of the vehicle

~longitude of the ascending node

, a'rgumnent of perigee or pericenter

C' 
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SEC TION I

INTRODUCTION

A. PURPOSE, SCOPE, AN D LIMITATIONS

This document is intended to serve as a technical reference manual

and basic usale guide for the Trajectory Analysis Program (TAP). Trajec-

tory generation and comparison, as defined in Section II, are the result of

the evaluation of a particular formulation for the equations of motion, which

yields the position and velocity components of a vehicle at some desired time

t, and comparison of that solution with one obtained by another method. The

mathematical formulations implemented in TAP consist both- of numerical

integration methods (Cowell and Encke) and analytic algorithms (Pines,

Kyner, and Escobal).
A precision numerical integration scheme used in the Cowell and Encke

formulal ions is described in Appendix A. A com-prehensive description of all

the methods used in TAP is presented with emphasis placed on key

characteristics.

Sections II (Reference Systems and Equations), 1V (Cowell and Encke

Implementation), V (Program Structure and Logic Flow), and VI (Program
Usage) are sufficiently detailed to meet the needs of users ,oncerned with

trajectory generation and comparison.
Only the class of elliptical geodetic orbits within a specific inertial

reference system is considered; force models allow for the noncentral

gravitational effects and a basic atmospheric drag effect. Particular empha-

sis is placed on the use of the Modified Encke formulation for trajectory

computation. The algorithm fo - the Kyner II nominal trajectory is developed

in Appendix B.

B. HISTORICAL BACKGROUND

In recent years, trajectory generation has been performed primarily

.1 by numerical integration of the equations of motion in the Cowell formulation

" by the TRACE Orbit Determination Progra,,w (Ref. 1) at Aerospace Corporation. K
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TAP was developed to analyze different computational methods for trajectory

generation, and to provide a tool to establish solution accuracy by means of

comparison. The program is written entirely in CDC 6000 series FORTRAN

and its flexible design permits the addition of new formulations and accuracy

tests of interest.

C. SUMMARY OF KEY FEATURES

By a collection of computational algorithms, TAP generates trajectories

and associated quantities, which are then compared and illustrated. The key

features of TAP can be identified by the following:

1. Methods of Trajectory Generation considered are the Cowell
formulation for the reference solution; and the Encke, Pines,
Kyner, or Escobal formulationfor the comparison solution.

2. Event Detection During Generation consists of:
0 Ascending and descending nodes

* Apsides

* Specified print time-s

• Crash radius

• Integration step-size change

3. Comparison of Orbital Parameters, both directly and indirectly

(in the form of differenc, s and root-sum-square), are in three

-basic coordinate systems: Earth-Centered Inertial (ECI),

Classical Elliptic, and Orbit-Plane.

4. Printer Plot of prespecified parameters versus time.

5.- Integration Closure results.

:,-2- I.
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SECTION II

-p TRAJECTORY GENERATION AND COMPARISON

A. THE BASIC PROBLEM

Fundamentally, trajectory genelation is a numerical process for

obtaining the position and velocity components of the vehicle state vector

S(r, , t) at some desired time t. A basic problem of trajectory generation

is to choose a process that evaluates a given formulation for the state vector

by means of a computational algorithm. In the Trajectory Analysis Program,
several mathematical formulations of the equations of motion and associated

computational algorithms are considered; both numerical integration methods

(Cowell and Encke) and analytic algorithms (Pines, Kyner, and Escobal) are

uanimplemented.

Trajectory comparison of different processes or methods of trajectoryFi generation is of particular interest. Typically, the state vector and related
~quantities resulting from one method are compared at some common time t

with those of another. Numerical properties are expressed in exact and dif-

ference form. To exhibit a comparison, TAP generates a precise numerical

integration method as a reference trajectory, which is then differenced at

, times of interest with a trajectory generated by another method. In addition,
a quick-look plotting feature graphically presents the behavior characteristics

of specified quantities.

SrD. TRAJECTORY GENERATION TECHNIQUES

Solution of the equations of motion in TAP can be expressed in analytical

form by an algorithm (Pines, Kyner, )r Escobal), or it can be obtained in

numerical form by special perturbation methods (Cowell or Encke).
In the case of the Cowell and Encke formulations for numerical inte-

gration of the equations of motion or deviation, a predictor/corrector Jelghth-

order differencing) Runge-Kutta/Gauss-Jackson technique is used (see

Appendix A), with time as the independent variable.

-3-
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Analytic methods available in TAP generate the Keplerian or

non-Keplerian state vector at some specified time t by the evaluation of

closed-form expressions, as follows.

Method Closed-Form Representation

Pines F & G functions (Keplerian only)

Kyner I Classical elements

Kyner II F & G functions

E scobal, Classical elements

In addition, Hermitian interpolation techniques (fifth- and third-degree

polynomial schemes) are utilized to obtain trajectory quantities at special

events (such as nodes, apsides, and crash radius), and specified

print times.

C. TRAJECTORY COMPARISON TECHNIQUES

The state vectors and related quantities at time t are obtained from

different methods and compared in the form of differences (A----reference
minus comparison). Differences are civen in three coordinate systems -

'Earth-Centered Inertial (ECI), Classical Elliptic, and Orbit-Plane - within

which the maximum separation between the two state vectors at time t is

expressed as the root-sum'square (rss).

The Cowell formulation has been chosen to generate the reference tra-

jectory in TAP, thereby defining the integration step times as comparison

times. The comparison trajectory can be specified as the result of
C'

'5

0 Encke formulation - Classical (Keplerian nominal) or Modified
(nonKe.plerian nominal)

° Analytic aigorithn - Pines, Kyner I, Kyner II, or Escobal nominals.

That is, both the reference and the comparison trajectories are generated

simultaneously for any trajectory generation case. In particular, the follow-

ing coxrtinationg of, methods are available.

o /

V V -4-
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Formulation Reference Trajectory Comparison Trajectory

Cowell Cowell Analytic Algorithm

PINES

KYNER 1
KYNER 2

ESCOBAL

Encke Cowell Encke

CLASSICAL

MODIFIED

Another useful trajectory comparison technique is contrasting integration

closure errors obtained from two different methods. Integration closure
error is the magnitude of the difference vector between the initial position
vector r and the resulting position veciur r (t = epoch) after integratingforward to some terminal time and then backward to epoch. Thus

ACLOSURE = . - r (t = epoch)•

0

-5-
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SECTION I

REFERENCE SYSTEMS AND EQUATIONS

The symbols used throughout this report follow, after which the basic

reference systems and equations used in TAP are defined and discussed.

A. SYMBOLS (NOTATION

time differentation and vector dot product operation

. time differentiation

a vector; for example, r is the vehicle position vector

( ) relates to a functional relationship, such as Sr, i) the vehicle
state vector, which is a function of r and i, or S(a, e, i, 2 ,
M),the state vector expressed in terms of-lliptical elements.
Also, used to denote row vectors; for example, r = (x, y, z)

A increment or difference

x vector cross product operation

I I absolute value, or vector magnitude operation; for example,

r =

V vector gradient operator

a matrix, or a set of elements

I[ I the integer operator of a scalar

[ ] a matrix; for example,

r= [x, y, zJ (row vector), or r = (column vector)

1 o 0
1= 1 3 X 3 identity matrix

LO 0 1]

A = [A] 6 X 6 matrix or array of trajectory quantities.

-7-



Superscripts

c computed or simulated value

i particular index relative to a set or vector

T matrix transpose symbol

* particular value of a predetermined constant

Subscripts

C comparison solution or value

e the earth

I g the Greenwich meridian

i,j, k, particular index denoting members of a set or components of a
vector. In general, i, j, k, =1, Z,...

n1 nominal value

a a transformation that is a function of a

Y differentiation of a vector with respect to the parameter Y

a transformation that i 'a function of 0
o initial value or reference point

B. REFERENCE SYSTEMS

Trajectory generation ant' comparison involve coordinate transformations

and require selection of t*he proper reference systems for evaluation and anal-

ysis. Several such systems are used in TAP. Basic to all is the earth-

centered inertial (ECI) system, which has as its fundamental plane the true

equator at epoch; its principal axis is the mean equinox at midnigit of the

date of epoch. This reference system does not take into accoumt precession

and nutation effects.

I- RART1--CENTERED INERTIAL SYSTEM 1ECI)

nertial position, velocity, and acceleration vectors are oriented it, the

reference system illustrated in Figure 1.

The position and velocity components of a vehicle's state vector within

this reference system may also be expressed in terms of the classical elliptic

and orbit-plane systems.

-8-
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I T

T radius vector ,Ix,z)

• '~ velocity vector ,)

&X Adrection of the ve-nal. equinox T in the equ-_tor plane

x position componet in the. di- ction

y velocityngt-e c omponent inthe X di.re orion ,(xlative oO)

y position component in the Y drection

Sy velocity component in the Y direction (relative to 0)

Z direction north perpendicular to the equator plane

! z position component in the Z direction

' * velocity component in the Z drection irelative to )•

k0 origin, which coincides with the center of the earth) .

i . Figure 1. Earth-Centered Iuerial R Uerence System

T7
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2. CLASSICAL ELLIPTIC SYSTEM

The state vector in the classical elliptic system (Fig. 2) is given at

tiixe t by

S =S(a, e, i,S,M)

• VEHICLE
,. 0 PERIGEE-

"o VEHICLE DIRECTION OF
I" _ PEkI(EE

Ik T/

T- 4- N OFNOE

<Vi

a semimajor axis of the osculatig onic

I- e eccentricity

I , , inclination

;,; , 2 right ascension,of -the ascending node

I 1W angle between the direction of perigee and: the line of nodes

01 o 'M mean anomanly
v true anoaly

b semiminor axis

!S ! Figure 2. Classical Elliptic Reference Framre

,,. .. .. EH-ICLE, ,DIRECT..O.. OF



3. ORBIT-PLANE SYSTEM

The state vector in the orbit-plane system (Fig. 3) is given at time t by

[ S = S(R, T, C,R', T' C')

Sz

2

Y

Figure 3. Orbit-Plane Coordinate System

In this instance the point P, position of the vehicle in the ECI system, repre-

sents the origin of the orbit-plan system defined by the vectors t, n, o,
which are referred to as the radial, in-track, and cross-track directions,

respectively, In the smaller sketch, it should be noted that the 9 axis is an

extensionof the geocentric radius vector. The 7 axis is both normal to the

-1 i

'i _ axis and -positive in the same general direction as the inertial velocity

ivector k.. Both lie in the instantaneous orbit plane. The axis is normal to :

the orbit plane (defiied by and 11) and thus forms a right-hand orthogonal

S.vste .',



The position and velocity of an E-truate point Q relative to point P are

then given by

Q = Q(R, T, C, R', T', C')

where

R = position component in the _ direction

T = position component -in the 11 direction

C = position component in the _ direction

\=R velocity component in the _ direction

T'= velocity component in the 1 direction

C'= velocity component in the direction

C. TRANSFORMATION EQUATIONS

The transformnation of the state vector to the other systems involves
the following equations.

1. FROM ECI TO THE CLASSICAL ELLIPTIC SYSTEM

To obtain the classical elements from ECI coordinates, the following

equations, are solved.'

-r 12 1a r ±

2-- C = re r

° C =1--

e a

. (Se =-/a-i r I/(a)1/Z

I (,

-i 2¢

-!2[7



rI.

I

I
" r = (T. r)/T

,, :E = (llr(L/la) 1 1

ez= Sz +2C
e =S +Ce e

VWxU

sin i = + (UZ +z

2/Co i x+y + (uy -Vx) ]  -1
y

sin u U /sin iz=-

Cos u =V z/sin i

sin = U-V, )/(l+Cosi)

Cos = U -V )/(I+Cosi)x y

S =1-u/

cos v = C /ev

sin v = S /e
=IV

M=E -e sin E

-13-



Z. FROM ECI TO THE ORBIT'-PLAN SYSTEM

The orbit-plane system is defined, given r, i, ECI vectors, by the

unit vectors
= rlr

=(rx r)jxi

Any ECI vector can be expressed in the orbit-plane system (RTC) by

the following dot products (where a and j are arbitrary ECI position and

velocity veitors):

R=a.

C=,

0 R'=j. &

TI
I C'= " ~

0c

D. TRAJECTORY GENERATION EQUATION0

Several sets of trajectory generation eque.lons are used in TAP to com-

I I pute the vehicle state vector S(r, , ) at some base tinie t. The mathematical

formulations of these sets-are now described.

L. COWELL FORMULATION

The direct numerical integration of the following vector equation of

Smotion is referred to as the Cowell method:

,, - -- ,i r

- - -14-



% <

where

r = Y,_

<0

S1-noncentral gravitation

S--atmospheric drag

2. ENCKE FORMULATION

The numerical integration of the following deviation-vector equation,

which relates the departure of the actual from some nominal position, is

referred to as the Encke method:

- - n

1i [rr 3 -r /r]-L+ i (i l,2)

where

P =r r n

-E = x11, Yn* Zn]

L S additive secular acceleration vector that
accounts for the consideration of a non-
two-body reference orbit.

The nominal trajectory r is the solutiono0f

-±_/r 3+ L

If L= 0, then the classical Encke solution results. K

-45- . 4
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The 1-term in 'the above equation can now be manipulated into the

0. K. Smith computational form (Ref. 2)

where 6 = rn/r. Note that only time is expressed as the independent variable
in this deviation-vectoi and that no prespecified rectificatiin criterion or pro-
cedure is considered.

3. ANALYTIC ALGORITHMS

Analytic algorithms give rise to closed form solutions for the nominal

equ~at-on of motion Y= -pr_/r + L. The three analytic methods of Pines,
Kyner, 'and Escobal are of interest here.

a. Pines Method

Closed-form expressions for the F & G functions are utilized in the
Pines method (Ref. 3) to evaluate the Keplerian state vector S(rn, n)n at
some specified time t, given the initial state vector S(ro , i ) at initial time

(epoch) to The method can be summarized by the set of equations

0.0

(too 10 + gt0o-o) o
'>~~~~~~ " - r-/r 3

.w'it h., s c~lar functions-

.- -f = (,a/ro)4Cose)-1) + l'

,,.!.,9 = t- [e-sine)in]= [sine-(e-M)]/n



Li,

$ -0

I

f= - (a2 ni/rro ) 3mG

g = (a/r)lcos6-1) + 1

and Kepler's equation relating the time t to the angular variable given by

M=nt 0 - sinB(l -r ° /a) (cos0-1) --o

where

a = (Z/r0 ) - 0 /!)

1,'~~ 1=P1/  " /2

b. Kyner Method

The Kyner method (Ref. 4) evaluates a non-Keplerian state vector

S(rn, ir nF), which includes the first-order secular effects of the earth's

oblateness. This technique utilizes the three rate parameters (ri, T , Y ). in

the formulation of nominal rn, where

9 is the rotation rate of the major axis of the nominal ellipse

T is the rotation rate of the line -of nodes of the nominal plane

Y is defined in terms of the nominal anomalistic mean motion

n = no (1-Y), where n0 is the mean motion at epoch.

-17-
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(1) Kyner Formulation I (KYNER 1)

The first formulation (Ref. 4) of the nominal r is given by the vector
-n

equation

[ri

nn

r n [(,ju)]o

that satisfies the differential equationin = -r/r 3 + L where

P TyfO + a (longitude of the ascending node)

i i 0 (inclination)

u = f + W (argument of latitude)

W = T (f -fo + (argument of perigee)
0 0

r =a (l-e )/I(+eocosf) (length of rn)
nl 0 00 -n

where

a a (semi-major akis)
0

Se e (eccentricity)
e e0

and the nominal true anomaly f is given as a function of time by the modified

Kepler equation
n(l-Y)t + M E e sinE.

-0 01
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-= Note that

tanlf/2) = 1 +e 0o)/{1- e)]lZ tan (E/Z)

M = initial value of the mean anomaly

23: ~~~ nao= '

rotation matrix [R] = [D(l)][C(i)] [B(u)]

Thus the nominal trajectory rn(t) depends on nine parameters, which are

The six values ao, e, i, o ,W M0

The three arbitrary rate parameters 71, T,'Y

If the rate parameters are set equal to,, zero (that is, if L = 0), then the

resultant nominal rn is Keplerian.

(Z) -yner Formulation II (KYNER 2)
The second formulation [REi. 5] of the nominal rn is given by the

vector equation

r =FM+GN

where

F, G = Keplerian scalar functions

M, N Rotating vectors that are always in nominal orbital plane

and maintain constant angles with the precessing line of

apses of the nominal ellipse.

Ii
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In detail, these scalar functions are described as

F = lI/ro(rn cosq) - (i/h)0 rn sin-p

G = (r/h)0 r sinq'

where

q' :f-f
0

= Vo 0

and the rotating vectors as

M=r + [A]r

N = i + AI0

The matrix [A] can be represented as a sum of constant matrices [A.]

(evaluated at epoch) whose scalar coefficients are slowly varying functions of

q and the rate parameters TI, T, Y. That is

[A]= [A(, T, Y o, i0 , U0 )

j=1:

-20
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In summation, the state vector St(:rnni n) is expressed as

r F I+ IA i0 + G [I+f[A]]j

j,'[I+ [AJ + F + 1GII4[A]] +G

i 'n- n

": 'where

-o -L 11 (1 Y)Z)jir /3 :F[A + (G;-[A])i

1k H (P;,q) ~ ~t + p (differential opexator)

-where p and q axe the arguments of the operator.

c. Escobal lethody
Ab in the Kyner method, the Escobal methDd (Ref. 6) ev'aluates azon-

Keplerian state vector S ¢ _ n  , i n), which includes the first-order ,e-ul=a
ffecta of the earth's oblateness. This technique utilizes the secular rates

of change in the three elements

(2 .~ Zncosik 0

tpo

-T o' k

POC

n~n G Y

QP



where

SPa eo /2( )3 (1 3 sinz io sinZu) (1)
00 0

J= second harmonic coefficient

00
po semi-parameter of the orbit a. epoch

= inclination (of the orbit epoch0 0 0 '

k = Gaussian or planetary constant

n1= k[p3/ a3Z (mean motion at epoch), 0 0

ti= sum of celestial-object mass and central mass

ae = semi-diameter of the central mass

ao = semi-major axis of the orbit -it epoch

r ° = radius, of object at epoch

= f + 1) (argument of latitude at 3poch)J ° UO0 0

w = argument of pericenter at epoch

£ = true anomaly at epoch0

Note that the formula for !' ie not the one given in Reference 6. To

insure thac the rate parameter Y for mean motion is consistent with the first-

order secular effects for S2 and w at perigee, the secular effect for the anom-
alisftc mean imOtion -should be used; thiat is, thne approximation oi the
Cunningham integral given in Eq. (1) above.

.. .



r :=x P+y

- -n r_ = -o)

I!I

_n rd

[k .[g+ 2 k. , + Ko . +y Y " + Q

where the unit vectors

P--+, _i)
Q i)

w = W(o, 0, i)

with"

P Cos Wo sin w 0 1 0 0k

Q, -Cos W 0 0 cos i sin i X

ai 1

W_ 0 O" iJ 6 -sin i Cos i

-23-y, a-27' A, -- :



cos n sin a 0

-sin 0 cos n 0

j [0, 1, ol

= [of Of 11

,+ 6

0

00,, and

x= a(cos E -e)

yA = a[1 e 2 sin E
00

nt + M = E - e0 sin E (Kepler's equation).

* -24-
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- E. MISCELLANEOUS EQUATIONS

Following are equations for specific trajectory quantities.

Angular Momentum, h

C o -f x i

Root-Sum-Square, rss

2 2 2 1/2rss = (R + T + C)

where

R=Ar =

T =ALr £

r= r. r

Keplerian Period, Pk

27ra 3

pk

Kinetic Energy, K. E.

K.E. V Z1

Lii7

, -25 -



Potential Energy, P. E. (J Only)

P.E. = - (I r) [I + (a" J lZr )(l - 3 sin2 6)J

where

sin 6 = /

Total Energy, T. E.

T.E, =K.E. +P.E.

Gravitational Acceleration Due to the Noncentral Force Field

,of the Earth, r1 (J2 Effect Only)

a 2

r r r

where

a = 1 earth radius
e

a
xz

* 3 2r yz
-- r

C,.26-
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Noncentral Barth Gravitational Force,

The gravitational acceleration r 1 due to the noncentral force field of F
the earth is derived from the generalized potential function

ait

=(p/r)E (a/r)n Pr c(sin) C os m + S sin m XnPr e( nm nm ,
n=2 M--o

where

r, ip, X are the geocentric distance, latitude, and East
longitude of the vehicle

ae is the mean equatorial radius of the earth

pm is the Legendre associated function of the first kind
n of degree" n and order m

Cnm, Snm are numerical coefficients.

Components of the acceleration vector i are expressed as

l--lUp

rl-- r-,vy = ,T 9 %GEast T: (p, X -LH
- .GNorth

-27-
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where

T is the earth-fixed local horizontal system
, transformation matrix

GLH is the gravitational acceleration due to the noncentralforce field of the earth in the local horizontal system,

in which the coordinate axes are directed Up (along
the position vector), East, and North.

Note that

GuP

GLH GEast

•GNorth J

,,so that

A1

GUp = OUl8rco = X8U/8Kln 1 KaG~as 8U lr cos )8lK ) =(P X) (,

,n=Z

and GNorth (I/r)(U/89) = K3 (pk)

n=Z

where

n
t (v~X -(I.r)nl(ern~ msnPG csX+ i

nfx

48-
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n

K; 1 (,) (ji/r cosj)(a er) n nm sin m nm Cos 7

K3  2E (Sin <

K n (q,X) (p=/r )(aer)n ' (sin p) cos C Cos m x + Snm sin mx
m=o ,

(Pm is the derivative of the Legendre function with respect to sin V.)

Two different optional normalizations of the Legendre functions axe

used. The alternate values for Cnm and Snm coefficients (Ref. 7) are denoted

by

rim, Sn (APL normalization)

and

Cnm, SrIn (Kaula normalization)

where

(rnm' "nfnm)= [(n+nl)/(n-m).] (Cnmv S nm

and

(C )= [(zn-l)(z-6o m)t1' (z

with 6.. being the Kronecker delta function.

-29- '
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Atmosphitric Drag Acceleration, i 2

p(VA/)(CDA/W) A

where

p the density at height h above an
oblate earth (the "nly atmosphere
model considered is the Lockheed-
Jacchia)

C D A/W = the drag coefficient

A = vehicle velocity vector relative-A .to a rotating atmosphere

!i '':-A 
= XA) YA' ZA]

"I I
AA =A AA

where,

-,w° X A a' Xt

ZA = 4

oA

wa = rotation rat(, of the atmosphere.a

-30-
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Apsis Event Detection (between t.mes t. and t )
I i-

If cosfi • cosP. 1 > 0, there is no event. Otherwise, an event has

occurred and

Ocosp 8 t  + r-i -i . "  i for all i.

Since cosp is a smooth monotonic function of t and cos P is near zero, then

at/a cospi =(acospi/at)

and allows interpolation for the time t for which cos 0 =, given

cospi, cosPi I, tiI t i. ,

ati/a cospi, at.1 /8 cospi 1

Alter tCo s P=0 is obtained, interpolation for the state vector yields

S tcosP= o )

given t i ,  .- ' r- -L i- - - - i' ii-i" "

Node Event Detection

If z i • i-1 O there is no event; otherwise, an event has occur-red.

Then assume that
Isi

ati/a. =OYU

-31-
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and interpolate for the time at which z O. After tZ=0 is obtained,

interpolatiQn, for the state vector yields

~~s(r, _;t t).

7,
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SECTION IV

COWELL AND ENCKE IMPLEMENTATION

Table I indicates the sequence of steps necessary to implement Cowell V
and Encke formulations.

Table I. Schematic fox Ip plementing Cowell and, Entke Formulations

STEP COWELL ENCKE

I Given So(r--°, -° I Given Sot~oi 0 ) (See Note 2)

2 Initialize r =r Initialize r

-1, Evaluete V Evaluat rn --'

P- -n

3 Evaluate Y Evaluate - - --n

Inte grate Integrate

Computr

T. , + PA -

Note 1: Subscript n denotes;nominal values olitained by some analytic method.

Note 2: If the user-chooses to specify rectIc'ation criteria c and i, then
investigate the rectification criterko, I P 1:, or lpj: a . If rectifi-
cation necessary, set So(ro, i and proceed with Step 2.

-33,-
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: SEC TION, V

. PROGRAM STRUCTURE AND LOGIC FLOW

The general structure and logic flow are illustrated in Figure 4.

*TAP*
(STORAGE)

" : :(DATA)

II•

9 INITIALIZE FILES

9 SEC TION V S

S[RNTEGRATION REGION]

"aTRAJECTORY EVALUATION

COMPUTED DAFERENCES TRAJECTORY

I .~GENER ATION
"NeITTIPLE [VNDETION REGON]-LOOPCASEETECTRE O

uoEOCPRNTI

I :' ,eCRASH STATUSINTEGRATION STATUS I
- I" * TERMIUATIOVN STATUSI

MUIPLE rEAPSIS AND NODN STATIS
PLOT A -PRINT STATUS

tEVENT ACTION] U

0 PRINTi " IT e PLOT
TERMINATION REGIO 

* ND P RINT ST S
N* PRINT PLOT DATA

, * PRINTER PLOTS

Figure 4. Diagram of TAP General Structure and Logic Flow
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SECTION VI

PROGRAM USAGE

The general use of the Trajectory Analysis Program will be show.n by

describing the specific input data, output tables, and plotting features avail-

able to the user.

A. INPUT DATA

All required input is nominally set to values in the basic unit system of

feet, degrees, and feet per second. In Table II, each input variable is

described and its preset value designated in the value field.

Table 1I. Input Data Description

Code Loca.,on Value Description

I MSTEP 100 Multi-step print flag

I MREV 10 Multi-rev print flag

I IMETH 1 Analytic method .lag

IMETH =1 ,. PINES

= , KYNERl

= 3 , KYNERZ

= 4 , Escobal

I IFORM 0 Formulation flag

IF)RM = , Cowell
= 1 , Encke

I IVAR 1 Independent variable flag
IVAR = 1, Time

= 2 , Eccentric anomaly

* J= 3 , True anomaly 1

T TI1% rM

AL %.. a4vzm4ioI14 pexturbation flag

IPERT 0 , No non-central effect

1 , Non-central (J.) effect

iNot available as of 6-1-69. A
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Table II. Input Data Description (cont.)

Code Location Value Description

I IPLT 0 Plot file data generation flag

IPL6T 0 , No plot file

n , Plot file generated
every n steps

I IUNIT 1 Initial units conversion flag

IUNIT = 0 , No conversion

= 1 , Convert from ex-
ternal units to in-
ternal units

I IPRNT 1F Print flag

IPRN.1..PIPRNT = J , Only difference print

= I , Standard print

PSTEP 60. Print step

PSTEP A 0 , Trajectory print
every PSTEP inter-
val from TZERO

I IDIFF 0 Integration cloaure flag

IDIFF 0 , Closure not
considered-

t 0 , Closure error
computed

TZERO (*) Reference time (epoch)

TE3ND (*) Termination time relative to TZER0 = 0.

x0 () x
C'C 0
2 ( ) yo Initial position vector

3 z

y() Initial velocity vector

3(*) o I

6Reiuired for each trajectory, case.

-38-
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* Table II. Input Dzta Description (cont,):

Code Location Value Description

CRASH 1. Crash radius V
GM .55303935E-2 Gravitation constant

C2 1082.3E-6 J2 

EPS 1.OE-9 Analytic convergence criterion

DRAD (57.295779513082) Degrees per radian constant
CPI (3.14159265358979) ir

DF 20925738. Distance conversion factor

VF 348762.3 Velocity conversion factor

AF 5812.705 Acceleration conversion factor

TF 60. Time conversion factor

* HO 1. Initial integration step

HMIN .015625 Minimum allowed integration
step

HMAX -64. Maximum allowed integration
step

ER 1OE-10 Integration truncation control

I IR 8 Ratio of Runge-Kutta steps to
Cowell steps

TDJ0 0. Julian date of epoch.

D1 6.83 Coefficients used in. the Lock-
D2 -15.684 heed-Jacchia atmosphere mo del

for the density expression.

FLUX 0. 10.7 cm solar radiation in units
of 10-20 watt/m 2 ; if equal to
zero, the FLUX is computed
n inte rnally.

-39-
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Table II. Input Data Description (cont.)

Code Location Value Description
0=,

CDAW (*) CDA/W: CD is aerodynamic
drag coefficient; A is the aver-
age cross-section area of

-¢ ,-vehicle; W is the wei ht of
vehicle; units are ft2 71b.

If optit n used input required for each trajectory case.

(1

0 -

,c,. - e(



B. OUTPUT DATA

Tables III through IX describe the basic output quantities.

Table III. Initial Condition Data (Internal Units)

Xo xao 1  TZERO

YO r ±0 F TEND 1
z j zo Fzo GM
DF VF AF TF

Not available

Table IV. Epoch (TZERO) Data (Internal Units)

T xj

NSTEP y _ i y

HO z

H (current integration
step) xcfl.

N (# of equations) YC rc -c 11C

hAx A
h Y1 r Ay Ar r-C A9 i

h Az Ai. A J
h (1 )

it?
, 1,*
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Table V. Trajqectory Data (Exte .nal Units)

T NSTEP H RS( R+4:T+A)

Ti a xj a0

yr. e YC c e

C 0

z i zc ic

h hCG

1 hR
bth: ( lT Orbit Plane X

_.Y'' Position h CC

I Vector T

h ( e Plane h

Ax J. a , A-RP itra

V. uis 4

C

;4NY: Ace AT' py

Az42- A,

A' 4 w. . AT , C C '
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C. PLOTTING 1,EATURES

Printer plots are given for prespecified orbital parameters versus

time. The parameters considered are:

RSS Root-sum-square of difference between Reference and
Comparison

ENERGY Difference in total energy (TE = KE + PE) between
Reference and Comparison

S(Xl)" Rad-I component of difference between Reference and
Comparison

'1 In-track component of difference between Reference and
Comparison

r(R) Radius of Reference

a(R) Semimajor axis of Reference

e(-) Eccentricity of Reference

i(R) Inclination of Reference

n(R) Right ascension of the ascending mode of Reference

(R )  Argument of perigee of Refe-ence

M(R) Mean anomaly of Referenc.

TE(R), Total energy of Reference

h (R) Polar component of angular momentum of Referencez
r(C) Radius of Comparison

a(C) Semimajor axis of Comparison

e(C) Eccentricity of Comparison

i(C) Inclination of Comparison

Q (C) Right ascension of the ascending mode of Comparison
W(C) Argument of perigee of Compurison

M(C) Mean anomaly of Comparison

TE(C) Total energy of Comparison

h (C) Polar component of angular momentum of Comparison
z

Examples of a subset of these printer plots are given in Figures 5

through B.
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APPENDIX A

NUMERICAL ACCURACY OF THE DEQ NUMERICAL INTEGRATOR

1. XNTRODUCTION

In recent months, much experience has been gained at the Aerospace
Mathematics and Computation Center with a particular numerical integrator

(Ref,8), referred to as DEQ and used principally for trajectory generation.

Developed and written by James F. Holt of Aerospace, it is designed to
numerically integrate a set of N simultaneous 2nd-order ordinary differential

equations. A fourth-order Runge -Kutta method is used for its starting pro-

cedure and a Gauss-Jackson method (with eighth-order differences) is use.
for normal integration. Additional techniquei allow a variable-step mode

(halving and doubling) with automatic local truncation-error controls.
In trajectory generation, DEQ is used to integrate the equations of

4: Imotion expressed in a Cowell and/or Encke formulation. The numerical
accuracy of this int-g;ator for typical geodetic orbits is of primary interest
here. Ta investigate the solution accuracy, direct comparisons were made

with known analytiz solutions and integration closure tests were performed

with augmented force models.

2. BASIC MODEL

A Cowell formulation of the equations of motion in vector form was
used for testing where the total Acceleration vector acting on a vehicle was

represented as the sum of a primary gravitational term and total perturba-

tive term,. Tf.ble A-I shows such -3. vector in an ECI coordinate system.
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Table A-I. Cowell Integration Method

Problem: Numerically integrate second-order ordinary differential

equations of the form

N

1Z + r
13  i-I -

where r Position vector

IL " Newtonian Gravitational Constant

_r.- A.cceleration vector resulting from*.11 i i perturbing forces

Solution: DEQ Floating-point Cowell (second sum) Runge-Kutta
o integration of second-order equations

* 4th-order Runge-Kutta method to start and
halve the step-size during the integration

SCowell "second-sum" (Gauss-Jackson) method
based on 8th differences to continue the integration.

a, NUMERICAL ACCURACY

All numerical results presented here are as of 12 June 1967,
An example of the numerical accuracy of this integrator on three

-- different computers - IBM 7094, CDC 3600, and CDC 6640 - is given in

Figure A-I., Note the following respeetive word lengths (DP = double preci-

sion):

Machine Word Length Significant Digits

IBM 7094 36 bits 8 (16 D.P)

CDC 6600 60 bits 14
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- / ORBIT A

//

100 -&:17094-
(6th ORDER PDO?

I0

FT

h= 2156(D

% =- 0.1-i /

0.0 [h1,66 / h=I,36(DP)

Figure A. 1. Accuracy of Numerical Integration
(Analytic Solution, Keplerian Model)
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The root-SUM-square (rss of the error) is the difference obtained from com-
paring a known analytic solution at each integration step and is plotted vs

time by using a log-log scale. Note that a fixed step of one minute, using

6th-order differences with partial double precision (PDP) on the IBM 7094, gives

a 100-ft error after one day; whereas the 8th-order method using single preci-

sion ($P) on the CDC 6600, gives an approximate 1/100-ft error, and only 2 ft

after 10 days. Comlparable results were obtained by using DP on the CDC 3600.

b. TEST CASES

The test cases chosen for this study are listed in Table A-Il.

Table A-IL. Test Orbits

Orbit A Orbit B Orbit C

a 21533095. 86767518. 21654273. (ft)

. .C000117 .737 .03115

i 45. 63.4 95.3 (deg)

02 0. 177. 351.6 (deg)

w 180. 270. 295. (deg)

P 88.2 713.4 88.9 (-min)
b 99.9 317.7 18.3 (n mi)

Iha 100. 21373. 240.3 (nmi)

A parametric relation between the error variation rss and the fixed-step size

h for a particular time period can be utilized to investigate optimum step

size. In Figure A -2(a) this technique is illustrated by plotting the relative

maximum rss error vs the integration-step size for orbits A, B, and C.

Note the roundoff error growth for Orbit B to the left of the optimum step

(0.5 rin) as h tends toward zero. On the other hand, the high eccentricity

of this orbit causes sudden changes in acceleration near perigee and a very

uniform acceleration at apogee, which results in a greater growth for

h than 0. 5 minute.
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Optimum steps for C:bits A and C are 1. 5 and 1.0 minutes, respectively.

" Thus, if the investigation time period is changed, the relative optimum step

may also change; for example, Orbit C has a 1.5-minute optimum for a 1-day

sample.

(1) Variable Step Mode

In general, the variable-step mode reduces the rss error (for a 10-day

period). For example, for Orbit B in Figure A-2 (b),with h = 0.5, it de-

I creases the rss; and for h = 1, it decreases the error from 25 to 8 ft. The

behavior is the a-me at the end of 1 day.

(2) Integration Closure Tests

With this num, rical integration method, closure tests were made on

three augmented force models. A generalized potential function expansion

for the aspherical earth was assumed, and the symbols Z, T, and R denoted

zonal harmoiics, zonal-plus-tesseral harmonics, and harmonics-plus-

_ ,resonance, respectively. Relationships between closure error and fixed-step

size permitted the 'desired "best' step size to be chosen for a particular force

model and orbit. Figure A-3 inclcates that for a i-day sample interval,

h = 1.0 minute is optimum for the Z and T models, and h = 0.5 for the R

rmvdel at the desired level of accu.-acy. In another example (Figure A-4 for

Orbit C), h = 0.5 is necessary for both the T and R force models.

0 (3) Constant Energy Considerations

For simple conservative fields,, such as spherical and Z models, both

the magnitude of angular momentum and its polar component exhibited linear

growth with time, but maintained an acceptable degree of significance as

defined by computer word length.

(4) Sample, unning Times

Table A-II gives sample running times for trajectory generation by

using three aixgmented force models. All stated times are considered upper
' bounds.
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Table A-III. Sample Running Times

Problem: Numerical Integration of Accelerations
N M

Derived from Geopotential Model U = U mI U
n=0 m0

Case h(min) N M CDC 6600 Time (sec)

1 day 2 4 0 (Z) 2

I day 1 4 0 4

1 day 1 12 6 (T) 12

1 day 0.5 32 3 2 (R) 27

1 day 0.25 32 32 53
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APPENDIX B

KYNER II NON-TWO-BODY NOMINAL TRAJECTORY

1. FORMULATION

The formulation of the Kyner II non-two-body nominal trajectory is

developed in Reference 5.

2. COMPUTATIONAL ALGORITHM FOR THE REFERENCE TRAJECTORY

To utilize the theoretical concepts presented in Section IIIoD, a

computational algorithm is developed to evaluate the reference trajectory.

The algorithm is composed of basic equations of the formulation, related

formulas, and the computational scheme.

a. BASIC EQUATIONS OF THE FORMULATION

2 ' Given the initial position ro and velocity i vectors at epoch, the

reference r can be written in terms of the F and G functions as

r F M+ GN (B-i)

where

M r + [A]r I + A]1~, - -o o

N i+ [A] z[I +[A]']

F (r/r ) cos ! - (i/h)O r sino

G =(r/h) r sinp
0

where

,, . L ai ,p [Ai]

ii " -- 65-
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ai are slowly varying scalar functions of 0

IAi] Iare constant matrices evaluated at epoch

ThW Eq. (B-I) becomes

_ [f + ['A] r + G [I+ 'Aj]i (B-2)

The reference velocity i is then obtained by differentiating Eq, (B-2) as

o,-

where

F (rlr0 )(* cos 4 - r sin 4) -(i/In) (i sin + r cos 44)

G (r/h) ( sin0 + r cos )
0

-! r
[- sin A E + Se cos

Ai a/r

8

= i (0, [A1 ]

The differential equation satisfied by r then becomes

r
= A.-. T.'D

"I'
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where

3 a11 e2 (

V -2 7_r (1 -3 a in' Bin? uo)

(p;q) 2 dd+ P d2 (differential operator)Sdt dt dt 2

and p and q are arguments of the operator.

b. RELATED FORMULAS

(1) Kepler's Equation in Differenced Form

The independent variable is expressed in difference form A t -t

(time), A= v - v (true anomaly), or A= E - E ° (eccentric anomaly). It is

therefore convenient to express the fundamental angle-time relationship

(Kepler's equation) as

M - M (E E) +2S sinZ (E - E )/2 - C sin (E - E) (B-5)
00 e 0 e 0

V where

M- M =n(t-t o )0 0
Ce ,(e cos E)0

Se (e sinE)°
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(2) True, Anomaly and Eccentric Anomaly Relationships

Difference forms relating t.-e truxe anomaly and the eccentric anomaly

are necessary to evaluate r, ., and x. These are

2
cos (v-v )=Ia (1- e)[ (E- ]o rro  0l-cos

1 2
sin v-v = 2 (12)- e2sin (v - vo 0 a ro [(M - Mo)  (E - E.) + sin (E Eo)]

sin (F. - Eo) sin (v-v L Co(vvo) Se
(ap)Z

rr
cos (E-E)= - ° 0 -cos (v-v) ]a ap L0o]

(3) Expressions for r, r and 0

If A = t - to , or A = E - Eo, thon the reference position distance is

.ivn iii' differ'ence form by

r =-C cos (E - E+S sin (E - E (B-6)

00

:i r=P +C Cos (v-V o) -S sin (v - O°
!v 0 v

where

C (e cos v)

S =(e sinv)

-Differentiation of Eq. (B-6) gives

IlI '=a [Ce sin (E- Eo) Se cos (E - Eo)]
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where

E n(air)

If O-v-v then

0P

i= h/r

where

-2 22 =n/n

c. COMPUTATIONAL SCHEME

If the initial position vector r and velocity vector i are given at-o -o
epoch time t o , the following procedure will establish a means of determining

the reference position r, velocity i, and acceleration Y vectors at time t.

Two computational phases, initialization and evaluation, are presented in

detail.

(1) Initialization Phase

All initial orbital parameters, rate parameters, coefficients, and time

invariant matrices are evaluated at epoch by the Lollowing equations.

(a) Initial Orbital Parameters

The desired set of orbital parameters is

(ro a, Ce S , e, i, uo  Co Sv s, W,% io
0 0 0 0

-
a
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where,

r° 0 is the geocentric radius distance at epoch

a is semimajor diameter of the conic at epoch

Ce , Se are coefficients evaluated at epoch

e is the eccentricity of the conic at epoch

i is the inclination of the conic at ,epoch

is the argument of latitude at epoch

is the longitude of the ascending node at epoch

Cv , Sv  are coefficients evaluated at epoch

v is the true anomaly at epochi 0

is the argument of perigee at epochWO

Equations for the orbital parameters are

r r r)0 o 0 )

0 =r. -0 0o

0

C l-r o /a = (ecosE)
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0 OZ O
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0 03z
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0 0 '
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Sv o (p/p.)2 =(e sin v)o

slnv =S /eo v

cosv =C /e "1
o v

v = tan (sin vo/cos v
010 0

If e = O, set v =0. Then

W U, v

0 0 0

(b) Initial Rate Parameters

'The initial value of the, rate parameters discussed in Reference 4 are'1 'evaluated from the equations

S_ 2 (a /a)o2 (a/r)3 (1 - 3 sir 2 " sin-23 e0 020-2

22 22

= J2.( a (1 - e, (4 -5 Yjin 2 io)

i = n(l - Y)

where

_ _ _n -( / a 3
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c. F and G Coefficients

The F and G functions have initial coefficients F1 , Fz, and G, , which

are evaluated at epoch as

F 1  (l/r)

F2 0

G I  (rh)o

d. Time Invariant Matrices

The constant orientation matrices, (A.) (j = i, ... , 8) discussedin

Section III. D. 3. b are giJren as

: 0 -1 0

[A,] = 0 0]

1 0 0
I I

[AZ] [0 1 0
.:'l0 0 0-

[A3 ] = [D(0)] [M(i)] [A 2 ] [C(-io)] [D(-Qo)]

[A4 1 = ()lS2 [C(i)] A (C(-i,)] [D(-S)J

where

cosS2 -sine 01

[D(2)] = [sine coso 0

-73-j'jc
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1 0 0

[C (i)] -- cos i -sin
0 sin i Cos

[A5 ] [Al l [A3 ]

[A6] - [A2] [A4 ]

[A7] [A2 ] [A3 ]

[A8] [Al] [A4]
Phase

(2) Evaluation Phase

To obtain the nominal state S (r n, _9n, , L) for some given value of

the independent variable (time t, true anomaly v, or eccentric anomaly E),

the following equations arc- solved.

First determine the value of the true anomaly difference

If time is the indtpendent variable (A -elapsed time from epoch),

then M - M -,:HA, and Kepler's equation
10

E-Eo o e sin(E-EM -M °  (E - Eo + 2Se sinz  ''-- 2ei E-E0

is solved for E -Eo. ThusX
r a (I -C cos (E -E) + S sin (E -E)) (B-7)

cos = a11- - cos (E-E))
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2 21/2
sin 4 =a (1e " (( -M) (E -Eo + sin (E -E))

0r

tan- I sn-)

oo

Now apply a monctonicity adjustment on 0 (see Section B. 3. f of this
Appendix). If true anr-maly is the independent variable (A = 0 = v - v ), then
compute eccentric anomaly difference E - E from

sin (E -E) rlap) sin D - (rlp) (I - cos 0) S

where

r p/(l+ C cost -,S sin#)

v v'

Thus

14 M-M 0 (E -,EY+ 2S sin2 [(E -Eo)/Z- c Cos (E-E).

Now apply a monotonicity adjustment on M - M (see Secti6n B. 3. f) and
0compute the corresponding elapsed time from epoch as

0-- LyJ. L L VL 07 LA.;
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If eccentric anomaly is the independent variable (A E - E), then compute

M - M and t - to as above and proceed with Eq. (B-7).

Evaluate the F & G functions and scalar coefficients a. of the rotation
3

matrix [A] as follows.

F r/r o cos o - (i/h) r sin1

G (r/h) r sinD
0

- (r/r )1 cos D- r sin ) - (i/h) (i sin 0 + r cos
0 0

(r/h) (,i sin 0 + rcoz 4D

j : where

a (A t) (C sin (E -E) + Se cos '(E -E))

) = E-ha/r

0

8K

and faA land { j 1 are as given in Eq. (B-8) in Section B.3.f.

NOW
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and

o8

-[Al = L ~j [A .
j=l

Form the [F] and [G] matrices as

[F] = F [I + A]

[G] G [I + A]

[ [I = '[+ A] + F [J

[6] = 6 [ + A] + G [Al]

Evaluate the nominal state S (r, r, "n L) by

I.r n F r + [G) 0*-

-n 0f + 0 _

r

n It- + "L

r n

n 62-

Lj ('2Ib) + (F;[A]) r + (G;[A]) o-

o f -n
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3. SUBROUTINE WKCNC2

a. IDENTIFICATION

WKCNCZ: Computational Algorithm for Generating Nominal Trajectory

6600 FORTRAN

Aerospace Corporation

b. PURPOSE

To generate a nominal trajectory {rr, , 1} at time t using a modified

F and G formulation.

c. NOTATION

0 (XO) initial geocentric position vector of the
vehicle at epoch

(XDO) initial geocentr.c velocity vector of the
vehicle at epoch

(GRAV) square of the gravitational constant of the
earth

J (CJ2) second zonal harmonic coefficient

7 (P;) numerical constant (n = 3. 14i5927...)

ek (EPSk) convergence criterion for solution of
Kepler's Equation

(ARG) independent variable difference (time At,
true. anomaly Af, or eccentric anomaly
AE)

{i, r. r} (XC) nominal trajectory point on the conic at
time t where

r is the position vector

-r is the velocity vector

r is the acceleration vector

27r (TWOPI) numerical constant

r °  (RO) geocentric radius at epoch

-78-
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Ka (CA) semimajcr axis of the conic at epoch

e (CE) eccentricity of the conic at epoch

o i (CI) inclination at epoch

u0  (CUO) argument of latitude at epoch

.0 (C20) true longitude at epoch

(GO) longitude of the ascending node at epoch

v (VOARG) true anomaly at epoch

(ARGPER) argument of perigee at epoch

y (GAMMA-A) rate parameter of nominal anomalistic
mean motion H

-" (ETA) rate parameter of the major axis of the
h, nominal ellipse

T (TAU) rate parameter'of the line of nodes of
the nominal plane

no  (CN) mean motion at epoch

ni (CNBAR) nominal anomalistic mean mokion

p (CP) semi-parameter of the conic at epoch.

d. INPUTS

ENTRY 1,: IENTRY = I (initial entry) requires r, .'1' J2 '7r, IARG

where

IARG I time is independent variable

= 2 true anomaly is independent variable

= 3 eccentric anomaly is independent variable

ENTRY 2: IENTRY = 2 (normal entry) requires e and Ar k

-79-
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e. OUTPUTS

ENTRY 1: IENTRY = I gives no output parameters

ENTRY 2: IENTRY = 2 gives nominal trajectory point at time t (r, i, ')

f. COMPUTATIONAL PROCEDURE AND EQUATIONS

Test IEN 1RY = I

Yes, go to (100)

No, go to (-ZOO)

(100) Set Zr = 2. X ir (SETUP ENTRY)

GMU =1' -

Compute initial orbital parameter set

ROSQ, = r =r *r
0 -O -0

, 2 1/2RO =rr Y
0 0

RORDO =r = r
00 -0 -0

VOSQMU = /. -)h'

RECIA = (?/r) - 2o1
SCA = a = 1/RECIA

CETERM = C /1 - (roa)

SETERM =S e  = o 0

CE =e =(C 2 +21/2

UOVEC =-U r r

WOVEC W(rxr,/Eo i
0 - 0

VOVEG =V w x UI-
-0 -0 -0

! , -8o-
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~p

SINCI = sin i = [U -v I
oz oz

cGsCI = cos i = [(U ox+vo)2+ (U oy v al 1

CI = i = tan-1 (sin ilcos i)

SINUO = sin u U /sini

0 ozC SUO = cos u o= Voz/in i

CUO = U0  = tan- 1 (sin u/Cos u)
00 0

SINLO = sin I = (U + V )/(1 + cos i)0ox oy

C0SLO = cos I = (U - V)/(l + cos i)0 o 0ox

CLO = I = tan -I (sinI /cos Io
CO 0OU, C = = 2

0 -uo

'SINGC = sin 2

COSCO = cos S2

CVTERM = Cv = (P/ro) - 1

SVTERM = Sv  = jo (p/4)/2
0

SINVO =sin v =S /e

C0SVO cosv

VOARG v°  tan (sinv/Cosv

ARGPER= u v

Compute initial rate parameter set

GAMMA = Y = -3/2 J (aa) (ar (1- 3 sin' sin' uo)Z e o 0 0 0

ETA =i1 = 3/4.T2 (a/ (/ - eo) -(4-5 sin 0)

I2

2e00 0

TA " 3 C2( o) cs"

'0 y ,~.- - - - _______---



CN =n =(1/a 3 1/2
CNBA = n(1 - )

Initialize F and: G coefficients

Fl = l1r

Fz= -( h)
0

Gi = (r/h)

Initialize time invariant matrices

[A.. = 0

[DI = [C] = [D-]= I-] =0

IT] =[u] = 0
A, (1, 2) =..1

A 1 (2,1) = 1'

A (1, 1) = 1

A 2 (2,2) = 1

[U] = 1, the identity matrix

cosST2 BinCZ 0

[D] = sinQ cosn 0

0 1

[1 0 1]

F1 0 0

[C] 0 cos i -sin
L -. 0 1:

-82-
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0 0
1c- [0 =Cos i sin P°

0 -sini cos i

[A31 : [D] [C] [A1] [C-] [D-]

[A41 = [D] [C] [AZI [C-] [D-]

° [A5] = [A1] [A3]

[A6 1 = [Az] [A41

[A7] = tA2 ] [A3

[AJ = [A1] [A4]

Exit
: ,(200) Test 1AIRG 1 , 2, or 3

_I If equal to I, go to (300)
If equal to 2, go to (400)

If equal to 3, go to (500)

(300) Time is the independent variable (A -- elapsed tirne from epoch).

Compute mean anomaly difference M -,M

DM = RiJA

Call KEQS

Enter with DM, C, S

Exit with DE = E - E o , eccentric anomaly difference

Compute true anomaly difference = v - v
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tzOl) SINDE sin(E- E o)

COSDE cos (E- E)
0

R r a [ 1- C cos (E -E)+S sin (E -Eo)j
COSP- Cos D 1 - a e (I e G cos (E E rr

SINPHI = sin = [a 2 ( 1- /2 rr

[(M -M (E -E ) +sinE-E

PHI = = tan (sinb /cos4 D)

The monotonicity adjustment fort, = f - fo is

If b 20, then = 0 +AE -MOD (AE, Zn), or

If Ii IAEIL1,T, then =0- 2r

If 0 < 0 (AM< 0), then,=0+AE - MOD (AE, -Zn), or

if J -AEI 2:i then 0 0+Z2nT

Goto (600),

(.-i (400) True anomaly is the independent variable (&= 0 v - vo)

Compute eccentric difference E - E

R =r p [1,+ C cos - S sin ]-

SINDE =sin (E - E) r(ap) sin1P - r/p (1 - cosP) Se

COSDE cos (E.- Eo) 1 -rr° (ap) (I - coso)

DE (E - Eo) tan- ((sin E - Eo0)/cos (E - Eo)0

QoCmorpute ,? anomaly diference M - M-
DM =(M - M o  = (E - Eo) + Se Sir, (E -E/2)

0 C 0 eO (0-o

e 0

-84-



Compute corresponding time parameter (t - to)

DT= (t • ) ( (- Mo) /

Go to (600).

(500) Eccentric anomaly is the independent variable (A = - Eo).
0

Compute mean anomaly difference M - M

DM = (M - M) (E - ) + ZS sinZ (E -E 0 /Z)- Ce cos (E ,- E )

Compute corresponding time parameter (t - t )

DT = (t - to) (M - Mo ) /-n

Go to (301).

(600) Compute reference trajectory point on the conic at time t

(r, r, r). Evaluate the F and G function coefficients

F = F r cos 0+ F r sin12

G = G1 r sin

Evaluate the scalar coefficients a (j=l, ... : 6) of the rotation

matrix [A]

a = sin (T)

a2 = -z [sin (-rI2)IZ

a3 = sin (mb)
a 4 = -2 [sin z

a5 = a a3 (B-8)

a =a 1a 9
a 8  a aI a 4
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Evl1t the rotation matrix [A]

[A] aj ( ) A

Evaluate the [F) and [G] matrices

[F] =F[I+Al

[G] GLI+.A]

(620) Evaluate the reference position vector r

r ( F] r 0+[LG~Ik

Evaluate the F and G function coefficients

nalr
r ~ aAE [C sin (E -E)+S Cos (E-E)]

2 2.. a (I -e )[sin(E - E) Arr - r I Cos (EE M)
-sin -D 0 0 00

(rr )
0

2 [2 1
Cos' =6 a .&E( - Cos (E - E0)))ri

- G1 sin6)+G (Cos )

Evaluate the scalar coefficients 0. (1, *.,8) of the rotation matrix

a.
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+ 1

aa
S4 3 )

il ks  = 1 a3 + az '
5 1 3 2 3

a6  a2 a 4 +a 2 4

a 7  - a2 a3 + a 2 &3

Evaluate the rotation matrix [A]
8

j=1

I., Evaluate the [F] and [G] matrices

[t.I = [.[I+A) + G []]

(660) Evaluate the reference position vector *
i. [] + 1O]i

Evaluate the differena.al operator ( ; )

(r cos{; a.) (j 1, ...= 8)

(r sin e; a.) (j= l, .. , 8),
where (p ; q) = 2 (dp/dt) (dq/dt) + p d1q/dt

Evaluate the [F] and [G ] matrices

~ F1 (r cos m~a) + F,( i a f~ F 4j=1

[,(r sin -5;a )][AJ(J])

-87-

¢-



(680) Evaluate the L vector

-L + (F;[A]) r + (G;[A]) i

n -

0

(690) Evaluate the reference acceleration i

Go to (900).

(900) Exit.

g. 'KEPLER'S EQUATION SOLVER
The first approximation for the solution of Kepler's equation is

(E - E (M -Mo) + e sin (M - M +eZsin (M-Mo

+ e /8 [1(3 ,sin 3 (M - M o) -sin (M - Mo)]

Kepler's equation in differerced form is given by

(M - M) - (t - to ) = (E - Eo ) + Z S. sin2 [(E- E) /Z

wrC-GC sin(E -E)

0

where

=1-r /ZCe 0

S = kool~ ) 1

e 00

An iterative solution of the differenced Keplerian form is computed by

the following scheme. Compute 1:
AE = (E - E )i+ 1 -(E - E) i
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that is,

A - f(E - E O!i /'(E - Eo)i (Newton-Raphson method)

Use the first approximation of (E - E o) given above as an initial guess,

where

f(E -Eo)i  (M- M) - (E- Eo)i-ZS e sin? [(E - Eo)/Z]i

+Ce sin (E-E).

and

f' (E - Eo) -1-2 Se sin [(E - E )/2i cos [(E -E)/ ]

+C cos (E-Eo).

=-i -S e sin (E - Eo)i + CeCos (E - E)4

give

AE (M ) (E - E) Z e sin 2 [(E - E) .+C sin (E- Eo)i

0 01 0 1/i e 0l+Se sin(E -E)- cos (E - E).

UntilAE _ 5 (10- , this procedure yields a solution (E - E ).
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